Board of Intermediate Education, A.P., Hyderabad

Revision of Syllabus

Subject – Physics-I (w.e.f 2012-13)

<table>
<thead>
<tr>
<th>CHAPTER-I</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td>physical world</td>
</tr>
<tr>
<td>1.1 What is physics?</td>
<td></td>
</tr>
<tr>
<td>1.2 Scope and excitement of physics</td>
<td></td>
</tr>
<tr>
<td>1.3 Physics, technology and society</td>
<td></td>
</tr>
<tr>
<td>1.4 Fundamental forces in nature</td>
<td></td>
</tr>
<tr>
<td>1.5 Nature of physical laws</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER-II</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>units and measurements</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>2.2 The international system of units</td>
<td></td>
</tr>
<tr>
<td>2.3 Measurement of length</td>
<td></td>
</tr>
<tr>
<td>2.4 Measurement of mass</td>
<td></td>
</tr>
<tr>
<td>2.5 Measurement of time</td>
<td></td>
</tr>
<tr>
<td>2.6 Accuracy, precision of instruments and errors in measurement</td>
<td></td>
</tr>
<tr>
<td>2.7 Significant figures</td>
<td></td>
</tr>
<tr>
<td>2.8 Dimensions of physical quantities</td>
<td></td>
</tr>
<tr>
<td>2.9 Dimensional formulae and dimensional equations</td>
<td></td>
</tr>
<tr>
<td>2.10 Dimensional analysis and its applications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER-III</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 3</td>
<td>motion in a straight line</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>CHAPTER-IV</td>
<td>PERIODS</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>C H A P T E R 4</td>
<td></td>
</tr>
<tr>
<td>MOTION IN A PLANE</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>4.2 Scalars and vectors</td>
<td></td>
</tr>
<tr>
<td>4.3 Multiplication of vectors by real numbers</td>
<td></td>
</tr>
<tr>
<td>4.4 Addition and subtraction of vectors. graphical method</td>
<td>14</td>
</tr>
<tr>
<td>4.5 Resolution of vectors</td>
<td></td>
</tr>
<tr>
<td>4.6 Vector addition. analytical method</td>
<td></td>
</tr>
<tr>
<td>4.7 Motion in a plane</td>
<td></td>
</tr>
<tr>
<td>4.8 Motion in a plane with constant acceleration</td>
<td></td>
</tr>
<tr>
<td>4.9 Relative velocity in two dimensions</td>
<td></td>
</tr>
<tr>
<td>4.10 Projectile motion</td>
<td></td>
</tr>
<tr>
<td>4.11 Uniform circular motion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER-V</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C H A P T E R 5</td>
<td>16</td>
</tr>
<tr>
<td>LAWS OF MOTION</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>5.2 Aristotle’s fallacy</td>
<td></td>
</tr>
<tr>
<td>5.3 The law of inertia</td>
<td></td>
</tr>
<tr>
<td>5.4 Newton’s first law of motion</td>
<td></td>
</tr>
<tr>
<td>5.5 Newton’s second law of motion</td>
<td></td>
</tr>
<tr>
<td>CHAPTER-VI</td>
<td>PERIODS</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>18</td>
</tr>
<tr>
<td>WORK, ENERGY AND POWER</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>6.2 Notions of work and kinetic energy : The work-energy theorem</td>
<td></td>
</tr>
<tr>
<td>6.3 Work</td>
<td></td>
</tr>
<tr>
<td>6.4 Kinetic energy</td>
<td></td>
</tr>
<tr>
<td>6.5 Work done by a variable force</td>
<td></td>
</tr>
<tr>
<td>6.6 The work-energy theorem for a variable force</td>
<td></td>
</tr>
<tr>
<td>6.7 The concept of potential energy</td>
<td></td>
</tr>
<tr>
<td>6.8 The conservation of mechanical energy</td>
<td></td>
</tr>
<tr>
<td>6.9 The potential energy of a spring</td>
<td></td>
</tr>
<tr>
<td>6.10 Various forms of energy : the law of conservation of energy</td>
<td></td>
</tr>
<tr>
<td>6.11 Power</td>
<td></td>
</tr>
<tr>
<td>6.12 Collisions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER-VII</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 7</td>
<td>19</td>
</tr>
<tr>
<td>SYSTEM OF PARTICLES AND ROTATIONAL MOTION</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>7.2 Centre of mass, Centre of Gravity</td>
<td></td>
</tr>
<tr>
<td>7.3 Motion of centre of mass</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER-VIII PERIODS

<table>
<thead>
<tr>
<th>CHAPTER-VIII</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C H A P T E R 8</td>
<td></td>
</tr>
<tr>
<td>OSCILLATIONS</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>8.2 Periodic and oscillatory motions</td>
<td></td>
</tr>
<tr>
<td>8.3 Simple harmonic motion</td>
<td></td>
</tr>
<tr>
<td>8.4 Simple harmonic motion and uniform circular motion</td>
<td></td>
</tr>
<tr>
<td>8.5 Velocity and acceleration in simple harmonic motion</td>
<td>12</td>
</tr>
<tr>
<td>8.6 Force law for Simple harmonic Motion</td>
<td></td>
</tr>
<tr>
<td>8.7 Energy in simple harmonic motion</td>
<td></td>
</tr>
<tr>
<td>8.8 Some systems executing Simple Harmonic Motion</td>
<td></td>
</tr>
<tr>
<td>8.9 Damped simple harmonic motion</td>
<td></td>
</tr>
<tr>
<td>8.10 Forced oscillations and resonance</td>
<td></td>
</tr>
<tr>
<td>CHAPTER-IX</td>
<td>PERIODS</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>C H A P T E R 9</td>
<td>GRAVITATION</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>9.2 Kepler’s laws</td>
<td></td>
</tr>
<tr>
<td>9.3 Universal law of gravitation</td>
<td></td>
</tr>
<tr>
<td>9.4 The gravitational constant</td>
<td></td>
</tr>
<tr>
<td>9.5 Acceleration due to gravity of the earth</td>
<td></td>
</tr>
<tr>
<td>9.6 Acceleration due to gravity below and above the surface of earth</td>
<td></td>
</tr>
<tr>
<td>9.7 Gravitational potential energy</td>
<td></td>
</tr>
<tr>
<td>9.8 Escape speed</td>
<td></td>
</tr>
<tr>
<td>9.9 Earth satellite</td>
<td></td>
</tr>
<tr>
<td>9.10 Energy of an orbiting satellite</td>
<td></td>
</tr>
<tr>
<td>9.11 Geostationary and polar satellites</td>
<td></td>
</tr>
<tr>
<td>9.12 Weightlessness</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER-X</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C H A P T E R 10</td>
<td>Mechanical Properties of Solids</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>10.2 Elastic behaviour of solids</td>
<td></td>
</tr>
<tr>
<td>10.3 Stress and strain</td>
<td></td>
</tr>
<tr>
<td>10.4 Hooke’s law</td>
<td></td>
</tr>
<tr>
<td>10.5 Stress-strain curve</td>
<td></td>
</tr>
<tr>
<td>10.6 Elastic moduli</td>
<td></td>
</tr>
<tr>
<td>10.7 Applications of elastic behaviour of materials</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER-XI

MECHANICAL PROPERTIES OF FLUIDS

11.1	Introduction
11.2	Pressure
11.3	Streamline flow
11.4	Bernoulli’s principle
11.5	Viscosity
11.6	Reynolds number
11.7	Surface tension

PERIODS

| 12 |

CHAPTER-XII

THERMAL PROPERTIES OF MATTER

12.1	Introduction
12.2	Temperature and heat
12.3	Measurement of temperature
12.4	Ideal-gas equation and absolute temperature
12.5	Thermal expansion
12.6	Specific heat capacity
12.7	Calorimetry
12.8	Change of state
12.9	Heat transfer
12.10	Newton’s law of cooling

PERIODS

| 16 |

CHAPTER-XIII

THERMODYNAMICS

13.1	Introduction
13.2	Thermal equilibrium
13.3	Zeroth law of thermodynamics
13.4	Heat, internal energy and work
13.5	First law of thermodynamics

PERIODS

<p>| 18 |</p>
<table>
<thead>
<tr>
<th>13.6</th>
<th>Specific heat capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7</td>
<td>Thermodynamic state variables and equation of State</td>
</tr>
<tr>
<td>13.8</td>
<td>Thermodynamic processes</td>
</tr>
<tr>
<td>13.9</td>
<td>Heat engines</td>
</tr>
<tr>
<td>13.10</td>
<td>Refrigerators and heat pumps</td>
</tr>
<tr>
<td>13.11</td>
<td>Second law of thermodynamics</td>
</tr>
<tr>
<td>13.12</td>
<td>Reversible and irreversible processes</td>
</tr>
<tr>
<td>13.13</td>
<td>Carnot engine, Carnot’s theorem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER-XIV</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINETIC THEORY</td>
<td>10</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>14.2 Molecular nature of matter</td>
<td></td>
</tr>
<tr>
<td>14.3 Behaviour of gases</td>
<td></td>
</tr>
<tr>
<td>14.4 Kinetic theory of an ideal gas</td>
<td></td>
</tr>
<tr>
<td>14.5 Law of equipartition of energy</td>
<td></td>
</tr>
<tr>
<td>14.6 Specific heat capacity</td>
<td></td>
</tr>
<tr>
<td>14.7 Mean free path</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>180</td>
</tr>
</tbody>
</table>